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To achieve NASA’s ambitious mission objectives for the future, aircraft and spacecraft will need intelligence to take
the correct action in a variety of circumstances.  Vehicle intelligence can be defined as the ability to “do the right
thing” when faced with a complex decision-making situation.  It will be necessary to implement integrated
autonomous operations and low-level adaptive flight control technologies to direct actions that enhance the safety
and success of complex missions despite component failures, degraded performance, operator errors, and
environment uncertainty. This paper will describe the array of technologies required to meet these complex
objectives.  This includes the integration of high-level reasoning and autonomous capabilities with multiple
subsystem controllers for robust performance.  Future intelligent systems will use models of the system, its
environment, and other intelligent agents with which it interacts.  They will also require planners, reasoning engines,
and adaptive controllers that can recommend or execute commands enabling the system to respond intelligently.
The presentation will also address the development of highly dependable software, which is a key component to
ensure the reliability of intelligent systems.

Introduction

NASA continues to push technology limits with its missions.  Increased functional goals often result in increased
implementation complexity, making both success and affordability that much harder to achieve. Moreover, it is
accepted that not all risks can be mitigated during design: software and components will fail or degrade; operators
will make mistakes; and operating environments are uncertain.  In addition, the state of the system and its
environment may dynamically increase control complexity or decrease reaction times such that traditional control
means are inadequate.  Development of critical intelligent system technologies that provide resiliency will enable
future systems to adapt and recover from these unanticipated problems.  Significant improvements in critical
technologies, including those related to software engineering and verification, will be required to reduce both cost
and risk in future NASA missions.

Mission Failures

In order to establish intelligent technology development priorities that address cost and risk reduction in
future missions, many programs have carried out studies of recent mission failures. Common risk areas have
been identified through classification of causes of mishaps from NASA, DoD and commercial accident
reports.  Sources of information included the actual accident case studies as well as failure analysis studies
carried out by the Aerospace Corporation1, Boeing2, ARC3, and others.  Publications that detail the lessons
learned from software related mission failures4,5 have also provided valuable insight into the requirements for
developing the intelligent systems of the future.

The Aerospace Corp. examined nearly 4000 launches from 19571.  Based on the analysis results, this paper
recommends enhancements for launch vehicles, including avionics redundancy, software and integrated system
testing.  In a smaller scale study on Mishap Cause Classification3 carried out by NASA ARC, software function and
propulsion and flight control subsystem failures ranked highest as initiators of mishaps. The mishap data presented
in a Boeing report2 indicate that loss of control in flight is the leading cause of fatal accidents and controlled flight
into the terrain is the second leading cause in commercial airline accidents.  Contributing factors in these accidents
included software errors, component failures, lack of proper human-machine interactions (poor training), operator
error on-board or on the ground (sometimes due to uninformed operator) and unanticipated operating
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environments. In fact, pilots have pointed out the demand for real-time, on-board integrated diagnostics that provide
“answers not just clues” to the causes of multiple anomalous conditions occurring during flight.  Nonintegrated
caution warnings are not sufficient because pilots are responsible for cognitive integration that takes precious
minutes and could mean the difference between life and death.

In general, software failures and lack of resiliency in operations and control systems have been identified as major
causes of mission failures.  Current technologies are not optimal for carrying out effective risk mitigation strategies
as they lack significant capability to assess system condition or to validate system performance.  System
robustness, redundancy and capability for rapid recovery are currently inadequate.  Also, because there is not
adequate investment in software engineering science and technology research, this field is not keeping up with the
demanding requirements of increasingly complex systems5.

Studies of past software/physical system failures help significantly to establish a baseline for predicting the
problems that need to be addressed for future missions. The mishap studies have identified flight critical software
as a high risk for current and future missions.4  The discovery of errors in Space Shuttle flight control software is on-
going and is among the highest risks that could potentially lead to loss of vehicle.   Leveson states that, “since the
shuttle started operation in 1980, 16 [crit 1] software errors have been discovered in the released software… these
problems occurred despite NASA having one of the most thorough and sophisticated software development and
verification processes in existence.”4    “Practical experience and empirical studies have shown that most safety-
related software errors can be traced to the requirements and not to coding errors4”.  DOD reports concur with this
perspective, stating that “great programmers will perfectly encode rotten requirements”5.  Advanced software
specification tools and V&V concepts will have significant impact on the success of future missions.

Recognizing that software does not work independently of the physical system in which it is embedded, lessons
learned from software related failures4,5 agree that research into software engineering science and technology is
critical to the success of future missions which will continue to become more complex. “Safety is not a property of
the software itself, but rather a combination of the software design and the environment in which the software is
used: It is application-, environment – and system-specific”.4  DoD reports recommend that future systems focus on
dynamic structures; a large number of tightly integrated and temporally distributed physical/information system
components with reconfigurable interconnection.  This will require significant investment in design theory
technology. Embedded software is important due to the growing integration role of information technology across all
vehicle platforms.  Integration of physical and information sciences will allow design of software for achieving
physical behavior and will allow software to absorb change in physical systems.  Ultimately, the capability will exist
to build and integrate physical systems dynamically from spatially distributed components which will not only affect
the success of future missions but will ensure significant cost reduction in cross platform implementation.

Intelligent system technology requirements derived from the mishap studies, indicate that the most important
physical component developments required to significantly reduce risk in future missions include:

1. Intelligent/autonomous flight control technologies
2. Intelligent/autonomous engine technologies
3. Advanced diagnostics and prognostics (includes development and implementation of sensor systems)
4. Advanced human-machine interfaces (includes communication technologies)

These studies also indicate that investment should be made in the development of software engineering tools and
validation and verification concepts.   Software engineering tools that would provide the highest return on
investment are:

• Requirement Engineering Tools
• Safe Software Design Tools
• Verification and Testing Tools
• Tool Selection and Tuning methodologies
• Distributed/Collaborative Software Engineering Tools
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Intelligent Systems & Operations for Risk Mitigation and Cost Reduction

The ultimate intelligent vehicle systems of the future will be able to carry out a system-level self-assessment and
perform real-time adaptive control based on hazards encountered. The intelligent vehicle envisioned will be capable
of planning and executing its mission, managing its health and scheduling its own repairs.  Development and
implementation of safe communications/interactions of the system with humans (on board or on the ground) is
critical to the success of intelligent systems and operations.

Intelligent systems will require the development of integrated autonomous operations and low-level adaptive flight
control technologies to direct actions that enhance the safety and success of complex missions despite component
failures, degraded performance, operator errors, and environment uncertainty. Inherent in this endeavor is
monitoring, management, and ultimately, control using a multi-level approach that progresses from components, to
subsystems, to integrated systems. This includes integrating high-level reasoning and autonomous capabilities with
multiple subsystem controllers for robust performance.  Future intelligent systems will use models of the system, its
environment, and other intelligent agents with which it interacts.  They will also require planners, reasoning engines,
and adaptive controllers that can recommend or execute commands that enable the system to respond intelligently.
Automation carries serious human factors risks, however, including overreliance on automated fault diagnoses,
information overload, and mode confusion.  These risks can be retired via a human-centered approach to the
design, development, and evaluation of advanced user interface concepts.

Figure 1 is a notional representation of the integration of intelligent technologies into vehicle hardware and
operational systems.  The key technology areas that must be integrated with the operational system are generically
described as 1) Fault Detection, Isolation and Recovery (FDIR or sometimes thought of as IVHM), Human-Guided
Operations, Intelligent Controls, Data Architectures, and Sensor Development.  Figure 2 breaks out the technology
area descriptions into more detail.

Figure 1. Notional representation of the integration of intelligent system technologies with
vehicle operational systems
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Figure 2.  Detailed breakdown of Intelligent Systems Technologies
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approach to the design, development, and evaluation of advanced user interface concepts.

Note: The latter research will produce crosscutting technologies applicable to all vehicle programs whether manned
or unmanned. The complex and dynamic nature of aerospace vehicle systems raises the distinct possibility of a
systems malfunction during flight. Today, the primary responsibility for fault management lies with the crew or
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ground personnel.  In the next generation of vehicles, intelligent systems technologies are expected to automate
much of the fault management process and enable “at-a-distance” real-time fault management for remotely
operated or autonomous vehicles. Incorporating these advanced technologies into the fault management process
carries human factors risks, including overreliance on automation, information overload, poorly designed user
interfaces, and mode confusion: insufficient understanding of automated activity and/or insufficient awareness of
the effects of automated actions on systems functioning.

Integration of IS&O Technologies (system software framework)

We define an intelligent-autonomous system as an integrated set of components that achieves specified goals
without requiring human intervention to make decisions that would otherwise require human intelligence to make
properly. We define an intelligent agent as an intelligent-autonomous system, or network of such systems, that
senses its environment, reasons based on internal state (stored information that may include sensory data, goals,
procedures, constraints, models, etc…), and acts by changing its internal state and the state of its environment in
order to achieve its goals without violating its constraints. By changing its internal state, an agent may “learn” such
that its performance is a function of its experience.  That is, while it acts, it learns from its environment in order to
improve the effectiveness of its actions with time. However, learning is not a necessary agent capability and can
generally be “turned off” as required. Intelligent agents that integrate technologies outlined above may have the
following desired capabilities for resilient vehicle control:

• Maintain stability or recover in the presence of vehicle and environmental uncertainties and changes.

• Reconfigure control system to compensate for damage/failure to control effectors.

• Gracefully degrade performance, while maintaining functionality to the greatest extent possible, if
unable to fully recover from damage/failure.

• Optimize achievable control performance through integration of motion control, power, propulsion, and
structural subsystems.

Figure 3.  An Integrated Reasoning Framework for Autonomous Vehicle Control
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Figure 3 depicts a general purpose integrated reasoning framework for an intelligent agent controlling a vehicle.
Goals or commands are received from a crew member, remote operator, or another system and are entered into
the temporal state and plan database where they are sequenced and decomposed by various reasoning engines
into primitive commands as needed. Sensory information and subsystem feedback from previous commands,
which may be fused or used by reasoning engines to determine states that are not directly sensed, e.g., a
diagnosis, are also entered into the database. The reasoning engines and the state and plan database use the
models, rules, etc…, to insure that any command sequence in the database does not violate a constraint. As a
result, command sequences will adapt to changes in the system and environment. The executive sends the
primitive commands to the specified control system at the appropriate time and generates the requested level of
telemetry to be broadcast. An example of an intelligent agent using this framework to autonomously control a
vehicle is the Remote Agent used to control the ion-engine propelled Deep Space One spacecraft in 19996.

Benefits provided by this framework include:

• Plans can be dynamically updated at execution time. This allows the agent to respond to change in the
system or environment, e.g., reconfiguring itself due to the failure of a component, and achieve the
system goals or a subset of them.

• Domain knowledge is separated from the program code. This allows the vehicle, mission, and
environment to change without having to change code and revalidate it. Moreover, depending the on
domain knowledge language, it may be provably verifiable rather than requiring exhaustive tests. This
is particularly valuable since for many intelligent systems, there are far too many execution paths
through the code to ever exhaustively test each one by executing it. As a result the cost of
reimplementing this agent on another vehicle or in another domain can be significantly reduced since
all the coded components can be reused without change.

• Sensing is unified so that decisions are made based on a consistent state of the system and its
environment. Otherwise, for example one reasoning engine may continue a command sequence
based on the belief that a switch is on because it previously commanded it on, whereas another
reasoning engine may infer that the switch is off and make decisions accordingly.

• Commanding is unified so that conflicts are resolved prior to execution. An agent may have several
reasoning engines and be flexible so that it can dynamically generate plans to achieve complex goals.
However, there is value in being able to enter in one location, a constraint, e.g., Switch A and B shall
never be on at the same time, so that regardless of the reasoning engines used, the agent will never
command switches A and B to be on at the same time.

• The framework is modular allowing components to be exchanged without redesigning the system. This
is of particular value since it facilitates the integration of specific intelligent system technologies without
requiring it to meet all the requirements of the vehicle that it will be used to control.

• The framework is amenable to being distributed over multiple computers and control multiple vehicles.
In order to achieve low latencies between sensing and acting, particularly when this may involve
computationally intensive activities such as planning and image recognition, it is helpful to distribute
the computational load over multiple processors in a straight forward manner. Moreover, the
framework can be used to control multiple vehicles in a manner similar to how it would control a single
vehicle with multiple subsystems or in other manners more similar to how people might achieve a goal
by negotiation.

Figure 5, depicts a generic architecture for an intelligent flight control system (IFCS) that could be integrated
into the system level framework described above.  There may be multiple subsystem architectures to deal
with on any platform.  Note that the IFCS architecture shown in the figure is generic in the sense that it can
be reused on many vehicle platforms by simply changing the reference model and the model used for
parameter estimation.  This type of architecture will significantly reduce the cost of control system
development for future vehicle systems.

As described above, the ability to validate an implementation of this framework is dependent on the modeling
language(s) used. Moreover, the more expressive a language is and hence, the more easily a wide variety of
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systems, physics, tasks, and constraints can be described, the more difficult it is to validate that language.
Validation is discussed further in the next section.

Figure 4.  Generic Architecture for an Intelligent Flight Control System

Software Engineering and Validation

Software is playing an increasing role in NASA's mission critical systems.  It is often instrumental in assuring that
systems meet critical mission requirements and maintain safe operations.  However, this increased dependence on
software introduces new risks into mission and system design, which are not always understood or properly
managed.  Misunderstandings regarding the exact nature and criticality of software requirements and,
consequently, inappropriate software development practices played a lead role in the failure of both the Mars
Climate Orbiter and the Mars Polar Lander, demonstrating that these risks are real.  It is clear that to enable
mission success, software risks must be identified, and appropriate measures must be taken to eliminate or
mitigate these risks.  However, we currently lack cost-effective methods for managing the risk of using software to
control complex systems in practice.  Figure 5 shows the growth in software complexity for NASA missions
between 1977 and the present.  Next generation space science missions are increasingly relying on highly complex
software to achieve greater levels of autonomy and robustness.  As mentioned previously, managing the risk of the
ever-increasing complexity of intelligent control and operations software will require significant investment in
software engineering science and technology.

Figure 5.  Increase in lines of code used in NASA missions since 1977.
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The development of dependable software requires software engineering activities to respond to changes in critical
requirements that effect system risks and have the capability to adapt based on feedback from development and
operations to support process improvement.  Current software engineering practices are largely ad-hoc resulting in
brittle practices with single points of failure, allowing critical errors to enter products and escape detection.   Design
of more resilient software engineering practices will require 1) empirically validated criteria for measuring the
dependability of software products, 2) a clear understanding of how software development methods impact
software dependability, and 3) cost-effective tools to enable these methods to be used in practice.

Empirical evaluation of proposed solutions for software dependability (both methods and tools) has been lacking
because of the difficulty for individual researchers to perform experiments at realistic scale. This has hampered
both the science and the technology transfer/infusion for software dependability solutions.  A simultaneous effort
should be made to identify dependability attributes of software artifacts, engineering practices, and operational
environments and to identify measures for these attributes.  With these measures, the causal relationships between
technical decisions and dependability outcomes can be measured and predicted.  Efforts are necessary to create
notations to support the description of software artifacts and dependability.  There is already a significant effort
underway in the software engineering community, to define and prove engineering techniques, tools, design
principles, practices and processes to support affordable creation of dependable systems and to disseminate the
processes and practices in educational programs. If these systems are not made more affordable and easier to
implement, the risk of future missions will increase.

The current best practices in software development include a range of techniques for requirements and design
modeling, software process management and software testing.  These techniques alone are not effective for
providing high-levels of confidence that software will behave safely - that intended or unintended software behavior
will not lead to critical system failures.  At each phase of software development, teams must apply and reformulate
requirements and understand complex interactions between requirements: system requirements determine
software requirements, software requirements influence software architecture, architectural constraints impact
algorithm selection and implementation, and test cases are derived from requirements. This problem is
compounded when software development for several interacting sub-systems is performed by different
organizations.  Without methods and tools to support the consistent specification and management of these
requirements across life-cycle phases and organizations, there is high risk of introducing critical errors into the
software.

Research will address the cost-effectiveness of software development techniques by tools that enable more
effective and efficient software engineering practices within NASA.  To provide this capability, tools will have the
following properties:

• Semantically Well-Founded - tools accurately predict software behavior during all phases of the life-cycle
• Human Centered - tools are designed to improve the way that people and organizations work
• Information Rich - tools actively support the creation, application and maintenance of plans, models,

knowledge and data

The main limitation of existing software engineering technology is that achieving high levels of dependability is very
labor and resource intensive.  Testing requires significant resources, but still does not provide adequate assurance
for large complex systems.  Commonly used graphical modeling notations, such as the Unified Modeling
Language, do not have well-defined semantics and therefore support only limited automated analysis.  Formal
methods based on mathematical models can support extensive high-fidelity and automated analysis capabilities
across the software lifecycle.  However, these techniques are very expensive to use because they require
extensive domain knowledge and familiarity with the mathematical modeling notations.  The tools themselves often
have serious limitations such as only providing support for limited modeling languages which do not capture the
complexities of real software; methods which are idealistic and cannot be integrated into a software engineering
process of realistic complexity; and stand-alone prototypes, which can only be used effectively in close
collaboration with the tool developers.
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Future research will support developments that address these limitations.  Tools must be constructed so they are
compatible with commercial modeling languages and tools being used within NASA projects.  To be cost effective,
they should support mixed-fidelity modeling and generate models from existing models and source code when
possible.  The tools developed should be designed to be human-centered and to be flexible regarding the software
engineering processes that can be supported.  They must also be intuitive enough to be picked up and used with a
reasonable amount of training by the average NASA software engineer or contracted software engineer.  They
should also not overly burden the Faster-Better-Cheaper–but–still-Safe budgets and schedules levied on programs
in trying to apply these new techniques.

Many current tools also lack support for collaboration among development teams.  This is a critical issue for NASA
when many software projects are managed and performed by multi-disciplinary teams spanning several NASA and
contracting organizations.  The recent significant advances in collaboration technology are beginning to be brought
to bear on this technology.  However, to really make an impact on the cost of software development, the application
of collaborative technology in software engineering must go beyond the simple use of these technologies to support
basic communication tasks.  Investigations are underway to develop software architectures for task-aware
applications which provide customizable support for the different roles that stakeholders play in collaborative tasks,
such as requirements elicitation and design reviews.

Perhaps more important than making individual methods and tools more cost effective, it is necessary to improve
the way that tools are used together in development processes.  We are currently lacking technology to supports
the cost vs. risk and benefits trade-offs that occur during software engineering process design and tool selection.
These tools will help us understand and model the relative cost-effectiveness of various techniques (algorithms,
designs, processes, and tools) for avoiding and detecting classes of system failures. There are currently a number
of investigations of the use of several technologies to address this problem, including risk-management and
decision support technology, software cost and reliability modeling, and organizational simulation tools.

Summary

To achieve the ambitious objectives for deployment of intelligence into future systems it will be necessary to
implement integrated autonomous operations and low-level adaptive flight control technologies to direct actions that
enhance the safety and success of complex missions despite component failures, degraded performance, operator
errors, and environment uncertainty.  This includes the integration of high-level reasoning and autonomous
capabilities with multiple subsystem controllers for robust performance.  Future intelligent systems will use models
of the system, its environment, and other intelligent agents with which it interacts.  They will also require planners,
reasoning engines, and adaptive controllers that can recommend or execute commands enabling the system to
respond intelligently.  Key to the successful integration and implementation of these technologies is the
development of highly dependable software.
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